10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Title: Inferring pesticide toxicity to honey bees from a field-based feeding study using a colony

dynamics model and Bayesian inference

Jeffrey M. Minucci!, Robert Curry®, Gloria DeGrandi-Hoffman®, Cameron Douglass?, Kris

Garber® and S.Thomas Purucker!

''US Environmental Protection Agency, Office of Research and Development, Center for Computational
Toxicology and Exposure, 109 TW Alexander Dr, Durham, NC 27709, USA

% Crystal River Consulting LLC, 1909 Stonecastle Dr, Keller, TX 76262, USA

> USDA-ARS Carl Hayden Bee Research Center, 2000 East Allen Road, Tucson, AZ 85719, USA

4US Environmental Protection Agency, Office of Pesticide Programs, 1200 Pennsylvania Ave. NW,

Washington, D.C. 20460, USA

Target journal: Ecological Applications

EPA Disclaimer statement: The views expressed in this paper are those of the authors and do not
necessarily represent the policies or positions of the Environmental Protection Agency or the

United States.

Abstract

Honey bees are crucial pollinators for agricultural crops but are threatened by a multitude of
stressors including exposure to pesticides. Linking our understanding of how pesticides affect
individual bees to colony-level responses is challenging because hives show emergent properties

based on complex internal processes and interactions among individual bees. Agent-based
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models that simulate honey bee colony dynamics may be a tool for scaling between individual
and colony effects of a pesticide. The U.S. Environmental Protection Agency (USEPA) and U.S.
Department of Agriculture (USDA) are developing the VarroaPop+Pesticide model which
simulates the dynamics of honey bee colonies and how they respond to multiple stressors,
including weather, varroa mites and pesticides. To evaluate this model, we used Approximate
Bayesian Computation to fit field data from an empirical study where honey bee colonies were
fed the insecticide clothianidin. This allowed us to reproduce colony feeding study data by
simulating hive demography and mortality from ingestion of contaminated food. We found that
VarroaPop+Pesticide was able to fit general trends in colony population size and structure and
reproduce colony declines from increasing clothianidin exposure. Model predictions of the
lowest observed adverse effect concentration (LOAEC) fell within a factor of 2 of the LOAEC
observed in the empirical data. The model underestimated adverse effects at low exposure (36
pg/kg), however, and overestimated recovery at the highest exposure level (140 ug/kg), for the
adult and pupa endpoints, suggesting that mechanisms besides oral toxicity-induced mortality
may have played a role in colony declines. The VarroaPop+Pesticide model estimates an adult
oral LDsg of 16.3 ng/bee (95% CI: 10.2-26.6) based on the simulated feeding study data, which
falls within the 95% confidence intervals of values observed in laboratory toxicology studies on
individual bees. Overall, our results demonstrate a novel method for analyzing colony-level data

on pesticide effects on bees and making inferences on pesticide toxicity to individual bees.

Introduction
Honey bees (Apis mellifera L.) provide essential pollination services for many agricultural crops,

but these services are threatened by increasing colony losses in North America and Europe in
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recent decades (Tylianakis 2013, Potts et al. 2016). While multiple stressors (disease, nutrition,
genetics and chemicals) are implicated, pesticides may be important contributors to these
declines (National Honey Bee Health Stakeholder Conference Steering Committee 2012,
Goulson et al. 2015) because they can cause direct mortality to individual bees, as well as a
range of sublethal effects (Krupke et al. 2012) and have been found in hives (Mullin et al. 2010).
Linking the effects of pesticides on individual bees to whole-colony success or failure is
challenging because hives are complex systems (i.e., superorganisms) with emergent properties
derived from internal population dynamics and complex interactions among individuals (Seeley
1995, Camazine et al. 2003, Godfray et al. 2014). While it is possible to measure declines in
colony-level properties over time (e.g., number of adult bees and cells of honey), it is difficult to
observe effects of pesticides inside hives at the individual bee level and directly link individual-
level and colony-level effects. Agent-based models that simulate internal hive population
dynamics in response to pesticide exposure may allow inference on how pesticide effects on
individual bees scale up to colony growth and survival.

Many managed honey bee colonies are located in or near agricultural areas, leading to
exposure to pesticides being applied to control crop pests (Mullin et al. 2010, Tosi et al. 2018).
Two primary routes of pesticide exposure for honey bees have been identified: contact and diet.
Contact exposure with pesticides occurs when foraging bees are directly sprayed or when they
land on foliage that has received direct spray or drift (Girolami et al. 2012, Krupke et al. 2012).
Dietary exposure occurs through ingestion of pollen or nectar derived from either pesticide-
treated agricultural crops (Girolami et al. 2009, Krupke et al. 2012) or from neighboring wild
plants contaminated through drift or transfer through soil and subsequent root uptake (Krupke et

al. 2012, USEPA et al. 2014, Bonmatin et al. 2015, Mogren and Lundgren 2016, Botias et al.
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2016). Furthermore, some classes of pesticides are relatively stable in the environment, leading
to soil contamination that can persist for months or years after application (Goulson 2014, Jones
et al. 2014). Acute and chronic pesticide exposure to honey bees can lead directly to bee
mortality, or indirectly via sublethal effects such as reduced foraging success (Henry et al. 2012),
impaired olfactory learning (Decourtye et al. 2005), and increased susceptibility to diseases
(Alaux et al. 2010, Di Prisco et al. 2013, Doublet et al. 2015).

Over the past decade, regulatory agencies such as the U.S. Environmental Protection
Agency (USEPA) and European Food Safety Authority (EFSA) have developed guidance for
risk assessors and stakeholders on data needs for honey bee toxicity testing, as well as how to
evaluate of potential risk of pesticides to bees (e.g., EFSA 2013, USEPA et al. 2014, Rortais et
al. 2017). These efforts were partly a response to public concern over significant losses of honey
bee colonies in the US and Europe (National Research Council 2007, Oldroyd 2007), and also
due to development of increasingly reliable laboratory toxicity testing protocols for honey bees.

USEPA’s process for assessing risk to bees utilizes a tiered approach that begins with
acute and chronic testing of individual adult and larval honey bees, and in higher tiers, considers
exposures and effects to colonies. In Tier I toxicity studies, individual larval or adult bees are
exposed to a single contact or oral dose (acute toxicity studies) or repeated oral doses (chronic
toxicity studies) of a given pesticide. These studies derive standard toxicity endpoints based on
apical endpoints (survival, growth or reproduction) that can be compared to estimated
environmental exposures. Acute exposure endpoints based on mortality are represented by
median lethal doses (LDso values), while chronic exposure toxicity endpoints are represented by
Lowest Observed Adverse Effect Concentrations (LOAECs) and No Observed Adverse Effect

Concentrations (NOAECs). These values are compared to Estimated Environmental
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Concentrations (EECs) for contact and oral exposures of a given pesticide that are generated
using the BeeREX model (USEPA et al. 2014). These comparisons, represented by risk quotients
(RQs), are then compared to the Levels of Concern (LOCs) for acute and chronic toxicity, 0.4
and 1.0, respectively, which were established by the USEPA to define whether there is a
potential risk concern for effects to individual bees (USEPA 2012).

Based on the results of Tier I studies, Tier I testing may be conducted. Tier II studies
involve comparison of empirically-based concentrations of pesticides in pollen and nectar to
results of controlled colony-level toxicity studies (colonies are fed known concentrations of a
pesticide), as well as consideration of effects to hives exposed in semi-field conditions (tunnel or
enclosure studies). If there are risk concerns (adverse colony-level effects at empirically-
observed concentrations of pesticides) from the more controlled Tier II studies, full-field (Tier
II), colony studies may be needed (USEPA et al. 2014). Semi- and full-field studies evaluate
pesticide toxicity at the colony-level, including potential measurement of adverse effects on
sublethal honey bee behavior such as foraging activity, and quantification of toxicity effects on
honey bee brood and food production. Higher-tier studies are considered more representative of
real field exposures by honey bee colonies, but interpretation of their data can be confounded by
interactions with other environmental influences and stressors (e.g., disease, nutrition, and
parasites) and variability among hives, and they are logistically challenging and expensive to
conduct (USEPA et al. 2014). Models are therefore being developed in the US and EU to
simulate colony-level effects of pesticides to aid synthesis of colony-level data, and to provide
regulatory agencies with additional evidence of whether higher tier (Tiers I or III) studies may

be informative.

[PAGE]

ED_006569N_00003966-00005



116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

The US model under development is VarroaPop+Pesticide (hereafter, VarroaPop), an
age-structured, agent-based colony simulation model (Kuan et al. 2018). It was first developed to
simulate colony growth and development through time (BEEPOP; DeGrandi-Hoffman et al.
1989), and subsequently extended to include infestation by parasitic Varroa mites (Varroa
destructor) (Degrandi-Hoffman and Curry 2005) and pesticide exposure (Kuan et al. 2018) to
determine their cumulative effects on colony growth and survival. Pesticide contamination of
pollen and nectar can be calculated based on application method, similarly to the Tier 1 BeeREX
model, or directly specified. Individual food consumption rates for each age and caste of bees are
used to scale up exposure to the entire hive. Toxicity is applied to each day-cohort, based on the
logistic Hill equation with LDso and slope parameters (Hill 1910).

Here, we present a method for inferring individual-level pesticide toxicity from colony-
level field data, employing the VarroaPop+Pesticide agent-based colony model. We used data
from a registrant-submitted feeding study on clothianidin, a nitroguanidine-substituted
neonicotinoid insecticide, in which hives were dosed with spiked nectar of varying
concentrations over a five-week period. Because nectar contaminated with the active ingredient
was provided directly to hives, this study focuses only on dietary exposure routes. We
implemented a Bayesian hierarchical model based on VarroaPop to explain dynamics of single
colonies in the feeding study. We then applied Approximate Bayesian Computation (ABC) to fit
our model to the empirical data and inferred parameters describing individual toxicity in
VarroaPop. We hypothesized that (1) VarroaPop can explain general trends in colony population
size observed in the control hives and (2) individual-level oral toxicity is sufficient to explain

colony declines observed at high concentrations of clothianidin in the feeding study.
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Methods
Colony feeding study design
A study on the effects of clothianidin on honey bee colonies in field conditions took place
between June 17, 2014 and April 27, 2015 in the Piedmont region of North Carolina. Eighty-four
hives were divided into twelve sites in low-agriculture areas of Guilford, Randolph, Alamance
and Chatham counties. Hives were assigned to one of six treatment groups that received
supplemental nectar feedings spiked with clothianidin at 0, 10, 20, 40, 80 and 160 pg/L.
Measured clothianidin concentrations in the supplemental nectar were found to be slightly lower
than the nominal treatment levels, so we refer to the treatments by the measured values, in units
of ng/kg: 0, 10, 19, 36, 72 and 140 pg/kg. We also used these measured values as the pesticide
inputs to VarroaPop. Clothianidin concentrations observed in crop nectar following foliar, soil
and seed applications range from 4-3400 ng/g, 4-40 ng/g and 1-4 ng/g, respectively, and
represent a variety of locations, conditions and crops (USEPA 2017). Treatments were assigned
with a stratified random approach that standardized colony size among the treatments. There
were 24 replicate colonies for the 0 pg/kg control, and 12 replicates for each of the five treatment
levels. Supplemental nectar feeding occurred continuously for 34 days from June 26, 2014 to
July 30, 2014, with clothianidin content prescribed by treatment level. However, we refer to the
nominal treatment values in the text, to be consistent with the language used in the colony
feeding study. In addition to the supplied nectar, bees were allowed to forage naturally for
pollen. All hives were treated for Varroa mites with an application of thymol in September 2014
in accordance with typical apicultural practice for the region (Louque 2016).

The condition of each colony was assessed before nectar feedings began (June 18-23),

once during the feedings (July 15-18), and one, five, and eleven weeks post-feeding (August 5-
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11, September 8-12 and October 14-22, respectively). During each colony condition assessment,
hives were opened, and each frame was removed and inspected. Area coverage was measured for
adult bees, larvae, pupae, eggs, honey, nectar, and pollen (bee bread). Area measurements were
then converted to individual or cell counts, using density of adult bees (for adults) or density of
cells on the frame (for all other endpoints) empirically measured in the study. To parameterize
the initial nectar and pollen store parameters in VarroaPop+Pesticide, we converted nectar and
pollen cell counts to weight, using cell depth of 12.5 mm, nectar density of 1.13 g/ml (30%
sucrose solution), and pollen density of 1.45 g/ml (corn pollen, a major pollen source for the
study hives) (Aylor 2002). Data used in our analysis (replicate-level means and standard

deviations) are publicly available (Louque 2016).

VarroaPop-+Pesticide model

The complete structure and equations of VarroaPop are described elsewhere (DeGrandi-Hoffman
et al. 1989, DeGrandi-Hoffman and Curry 2004, Degrandi-Hoffman and Curry 2005, Kuan et al.
2018); here, we provide a brief summary. VarroaPop is an agent-based model that simulates
colony dynamics, based on queen egg-laying rate, development of workers and drones, and
activity patterns of foragers. These dynamics are optionally modified by Varroa mite infestation
(not considered here), and oral and/or contact exposure to pesticides. Queens are simulated as
individual agents, with daily egg-laying rate and proportion of eggs fertilized determined by
weather, colony size, worker population, photoperiod and fecundity (queen strength) (DeGrandi-
Hoffman et al. 1989). All other bees are simulated as day-cohort agents which age and transition
between life stages and consume pollen and/or nectar based on age and caste (Rortais et al. 2005,

USEPA 2014).
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We focused our modeling on a time window spanning just before nectar feeding
treatments began until eleven weeks post-treatment. VarroaPop+Pesticide requires daily weather
data on temperature, precipitation, hours of daylight, and wind speed for the simulation period to
determine potential foraging time. We used National Oceanic and Atmospheric Administration
(NOAA) weather data gridded at 0.25° x 0.25° resolution and centered at 35.875° N, 79.375° W
near the center of the feeding study area (Fry et al. 2016). Mean daily temperature during the
exposure period was 23.3 C, close to the 15-year average for this period of 23.9 C. Mean daily
precipitation was 0.24 cm/day, 33% lower than the 15-year mean of 0.36 cn/day. In the model,
when weather is favorable (maximum temperature between 12 C and 43.3 C, wind speed less
than 21.1 m/s, daily rainfall less than 0.5 cm), foraging honey bees collect pollen and nectar from
an infinitely large range area, based on a specified number of trips per day. Resources collected
in excess of daily consumption are stored and potentially consumed later when daily foraging
does not meet hive food requirements. Pesticide contamination of pollen and nectar can be
calculated based on application method and timing, or directly specified (as in this study) (Kuan
et al. 2018). Mortality due to ingestion of this contaminated pollen/nectar is calculated for larval
and adult age-cohorts, based on the dose consumed and a logistic dose-response curve
(parameterized by LDso and slope) (Hill 1910, Kuan et al. 2018). Contact exposure to foraging
bees can also be simulated in pesticide foliar spray scenarios, but is not considered in this study,

which included only dietary exposure.

Modeling the feeding study data using VarroaPop+Pesticide
We defined a Bayesian hierarchical model, which included the VarroaPop+Pesticide agent-based

model, to explain dynamics of single colonies in the feeding study. We then used it to simulate
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the 84 colonies in the feeding study and produce treatment by time point summary statistics that
corresponded to observations in the study. We modeled the population structure of an individual
colony i at a given time point 7 (¥; ;) as
Yit = [Wio X, 2, Inity, E;, Stry, Ly, t) ()
Str; ~ Normal(ise, dser)

L; ~ Normal(y;,o;)

Userr ~ Unif (agt'r,L’ béttr,L

Ostr,p ~ Unif (agtr,L' bgtr,L)
where f is the VarroaPop+Pesticide agent-based model; yio is initial population structure for
colony i;, x is a vector of toxicity random variables; z is a vector of fixed variables including
weather conditions; /nif; is a vector of initial size, population structure, and food resources for
colony 7; £; is the clothianidin exposure level for colony i; and Str; and L; are random variables
for queen strength (egg-laying rate) and forager lifespan, respectively, for colony i. We
considered Str; and L; to be random variables drawn from a normal distribution shared among all
colonies in the study because they strongly influence population dynamics and vary between
colonies (Kuan et al. 2018). Thus, our model uses these two random variables to account for the
variance among replicate hives in the feeding study. For the mean (i) and standard deviation (o)
hyperparameters of the normal distributions, we defined uniform hyperpriors with ¢ bounded
within [1, 5) for queen strength (equivalent to 1000 to 3000 eggs/day) and [4, 16) days for
forager lifespan, the full range of possible values in VarroaPop, and ¢ within [0, 2) and [0, 3),
respectively (Table 1). We also defined prior probability of toxicity parameters x as a uniform

distribution spanning the range of plausible values (Table 1). Adult and larva oral LDsp was
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defined within [0.1, 100) ng/bee, a considerably wider range than that observed in laboratory
studies (USEPA 2017). Adult and larva dose-response curve slope was defined within [1, 9) %
mortality per ng clothianidin, the range defined in a previous sensitivity analysis of VarroaPop
(Kuan et al. 2018). We then used Bayesian inference to estimate the joint posterior probability of
toxicity parameters X and hyperparameters pse, Osw, L and or.

In addition to initial hive conditions, weather data, and toxicity parameters,
VarroaPop+Pesticide requires parameterization of pollen and nectar foraging behavior and
consumption rates for each life stage. We treated these as known constants shared among all
colonies in the feeding study (Appendix 1 Table S1). For pollen and nectar consumption rates,
we used the empirically-derived values compiled in the USEPA Final Guidance on Bee Risk
Assessments document, taking the mean when ranges were given (USEPA 2014). For the
number of nectar-gathering trips per day, we started with 10/day, the mean value used by the
USEPA Bee Risk Assessment Framework document (USEPA 2012) and increased this until
nectar stores could be maintained in VarroaPop for control treatment hives. This resulted in a
final value of 17 trips/day, which is within the previously reported range for foraging honey bees
(Winston 1987). Because pollen foraging occurs primarily during the first half of the day, we set
the number of pollen trips to 8/day which is close to the previously reported mean pollen
foraging activity by honey bees (Klein et al. 2019).

To confirm that our model could fit the general population structure of the control hives,
we did an initial VarroaPop+Pesticide run with the mean initial conditions of the control and
previously described parameters. We observed that, although the adult population count
estimated by the model was in agreement with empirical data from the study, there were more

pupae, larvae and eggs in the empirical data than was predicted by VarroaPop, suggesting
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unexplained mortality as pupae transition to adults. We therefore reduced the pupa-to-adult
transition survival rate in the model from 100% to 60% (Appendix 1 Table S1), the level at

which the predicted population structure roughly matched the control data.

Model inference using Approximate Bayesian Computation with sequential Monte Carlo

We used Approximate Bayesian Computation (ABC) to infer probability distributions of toxicity
parameters in our model, given the empirical feeding study data. ABC is a computational method
for approximating the joint posterior probability distribution of a model by comparing its
outcome to empirical data (either with individual data points or summary statistics) (Beaumont
2010, Csilléry et al. 2010). We compared the mean and standard deviation of empirical and
estimated colony endpoints (number of adults, pupae, larvae and eggs) for each treatment group
by time combination. Parameter sets (particles) are either accepted or rejected based on whether
their distance from the real data, as calculated by a distance function on summary statistics (in
this case the sum of absolute deviation), is less than an acceptance criterion €. A key advantage
of ABC is that this distance function replaces a formal likelihood function, allowing inference on
black-box or agent-based models like VarroaPop which lack a tractable likelihood function.

To explore parameter space and propose potential parameter sets for ABC, we used a
sequential Monte Carlo (SMC) algorithm, also known as particle filtering (Sisson et al. 2007,
Toni et al. 2009, Doucet and Johansen 2011). This algorithm uses Monte Carlo iterations (called
populations), each of which takes the distribution of particles accepted by ABC in the last
population as the prior distribution from which to sample. With each successive population, the
acceptance criterion € is decreased, resulting in an increasingly close approximation of the

posterior.
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To carry out ABC with SMC sampling (ABC-SMC), we used the pyABC package
version 0.9.2 in Python 3.6 (Klinger et al. 2018), with computation distributed across 40 cores.
We used the sum of absolute deviation (L1 norm) as the distance function because it may be
more robust to outliers than the commonly-used sum of squared deviations (/> norm), but
performs similarly, overall (Prangle 2017). We chose to fit our model to the mean and standard
deviation of adult and egg counts because these two endpoints should provide sufficient
information to estimate all intermediate life stages. Thus, our distance function compared model
predictions and empirical data for 96 summary statistics (6 treatments x 4 dates x 2 endpoints x 2
statistics). For the transition function, which converts each set of accepted particles to the prior
for the next generation, we chose a local multivariate gaussian kernel density estimator (KDE),
using the nearest quarter of neighbors, which leads to faster convergence than a global KDE
(Filippi et al. 2013). We adjusted € each generation to the median distance of accepted particles
in the prior generation. We used a population size of 500 accepted particles for the first 11
populations; for populations 12 and 13, we reduced the population size to 100, due to the
computational demands of finding accepted particles when epsilon is very low. We ended
sampling after 13 populations because computational time had become prohibitive for such small
return, since € decreased only slightly with each additional generation and marginal posterior

distributions had become stable.

Predicting colony response to clothianidin
We used our fitted model to make predictions by sampling the joint posterior, which involved
drawing parameters from our final generation of accepted particles -- weighted by their distance

from the empirical data -- and evaluating the model using each parameter set to produce
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300 synthetic feeding study data. After 200 samples from the posterior, resulting in 200 model

301  evaluations, we calculated the median value for the prediction of interest, as well as the 2.5"and
302  97.5"™ percentiles to create 95% prediction intervals. These reflect variation in individual colony
303  strengths, as well as clothianidin toxicity parameters, as inferred from the empirical data.

304  Because we sampled from the joint posterior, all predictions reflect the covariance structure of
305  the parameters.

306 We used this method to predict the clothianidin adult and larva oral dose-response curves,
307 and distribution of egg-laying rates (derived from queen strength) and forager lifespans among
308 colonies in the feeding study. We also predicted colony population structures through time for
309  each treatment and compared these results to predictions for the control treatment. We then

310  assessed whether our model predicted a significant reduction in the number of adults, pupae,

311 larvae and eggs at any time during the study, for each treatment level, as well as several untested
312  exposure levels between the NOAEC and LOAEC (36 pg/kg and 72 pg/kg, respectively)

313  observed in the feeding study. We defined a significant reduction as a period when the predicted
314  difterence from the control was significantly below zero (lower 95% prediction interval did not
315  contain zero).

316

317  Results

318  Details of ABC-SMC sampling

319  We used Approximate Bayesian Computation with sequential Monte Carlo sampling (ABC-

320  SMC) to infer posterior probability distributions of key parameters in our VarroaPop+Pesticide-
321  based statistical model. Sampling occurred over 13 populations, with acceptance rates that began

322  at 51.9% and decreased to 1.3% (Figure 1). The total number of parameter sets (particles)
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considered was 62,346, each of which required 82 individual runs of VarroaPop+Pesticide, for a
total ~5.1 million model runs. Actual computation time was approximately 38 days. Sampling
was stopped after population (SMC iteration) 13 due to increasingly long computation times
yielding little improvement in the acceptance threshold € (Figure 1). At this point in the
algorithm, there were no major shifts in the posterior probability of parameters between

generations (Figure 2).

Comparison of model predictions to the empirical feeding study data

To assess whether our VarroaPop+Pesticide-based model could explain patterns of the feeding
study, we compared our ABC-SMC-parameterized model’s predicted colony demographics
through time to empirical data. For control treatment hives, model predictions matched general
temporal trends which included a relatively stable adult population, sudden declines in pupae and
adults at the final sampling point, and a consistent decrease in the number of eggs (Figure 3; also
see Appendix 2 Figure S2). The model also successfully predicted declines across all population
endpoints (counts of each caste) for the 72 and 140 pg/kg treatments, although it underpredicted
the magnitude of decline at 140 pg/kg for adults, pupae and larvae. Our 95% prediction
intervals, which captured variability in parameter values and individual hive strength, overlapped
with the standard deviation of the field data in 20/24 treatments (83.3%) by sampling date

combinations, excluding the initial time points.

Predicted no/lowest observed adverse effect concentration (NOAEC/LOAEC)
We used our predicted colony size and population structure trajectories across the clothianidin

treatments to estimate the no observed adverse effect concentration (NOAEC) and lowest
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observed adverse effect concentration (LOAEC) for adult, larvae, pupae and egg endpoints.
When comparing all treatment levels present in the colony feeding study to the control, our
model predicted a NOAEC and LOAEC of 36 and 72 ng/kg, respectively, on the basis of adverse
effects on adults and brood (Figure 4, Appendix 2 Figure S3). Across endpoints, colonies in the
72 ng/kg treatment had significant population reductions versus the control for 46.8% of the
study period, on average (i.e., 46.8% of the time the 95% prediction intervals for change in
number bees from the control did not contain zero; Table 2). Bee colonies in the 140 ng/kg
treatment were affected more severely, with significantly lower populations than the control for
88.7% of the study period, on average (Table 2).

Our parameterized model also allowed us to estimate a more precise NOAEC and
LOAEC (between 36 and 72 ug/kg) than was possible in the colony feeding study, by predicting
adverse effects at intermediate treatment levels that were not included in the feeding study
design. We predicted effects on colonies from exposure to 50, 55, 60, 65 and 70 pg/kg
clothianidin-spiked nectar, and found an estimated NOAEC and LOAEC of 55 and 60 ug/kg,
respectively, based on adverse effects on the number of adult bees (Figure 5), and brood
(Appendix 2 Figure S4). Across all endpoints, colonies exposed to 55 pg/kg clothianidin had
significant population reductions versus the control for only 2.8% of the study period on average,
an effect which may not be biologically significant for colony survival. In contrast, colonies
exposed to 60 pg/kg clothianidin had significant adverse effects for 33.6% of the study period,

on average (Table 2).

Probability distributions of model parameters inferred from feeding study data
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Through ABC-SMC, we inferred the most probable parameters for our model from empirical
feeding study data. We considered four VarroaPop+Pesticide parameters that characterize
pesticide toxicity at the individual bee level. Adult LDso, the median lethal oral dose for adults
and foragers, had a large impact on our model’s ability to fit the empirical data and, therefore,
had a sharply defined marginal posterior probability distribution (Figure 6). The median adult
LDso was 16.3 ng/bee, with a 95% credible interval (CI) of 10.2-26.6 ng/bee (Figure 2). The
slope of the adult oral dose-response curve had a median value of 6.1 (95% CI: 1.5-8.7). In
contrast with adult oral toxicity, larval toxicity did not show a strong marginal trend. The median
larval LDsp was 62.4 ng/bee, with a 95% CI that covered most of the possible range (7.3 -98.0
ng/bee), and median slope of the larva dose-response curve was 5.74 (95% CI: 1.5-8.6).

We also inferred population-level parameters that described distribution of colony
strength across hives in the feeding study (Figure 6). Queen strength, which controls the
maximum egg-laying rate in VarroaPop and varies from 1 to 5, had a mean of 3.6 (95% CI: 2.7—
4.8) and a standard deviation of 1.8 (95% CI: 1.4-2.0). Forager lifespan, which varies from 4 to
16 days in VarroaPop, had a mean of 14.5 days (95% CI: 13.0-15.9 days) and a standard

deviation of 1.0 days (95% CI: 0.1-2.7 days).

Model predictions of clothianidin toxicity and colony strength

We used our parameterized model to infer clothianidin dose-response curves that best explain the
empirical feeding study data. The median adult oral dose-response curve indicated that
individual mortality, at a rate of at least 1%, began at 5.2 ng/bee and increased to 99% by 34.8
ng/bee (Figure 7, left). Accounting for uncertainty in the adult LDs¢ and slope parameters, 95%

of dose response curves exhibited at least 1% mortality at a dose of less than 11.4 ng/bee and
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reached at least 80% mortality by 52.3 ng/bee. The larva oral dose-response curve was more
variable due to greater uncertainty in the larva LDs¢ and slope parameters (Figure 7, right). The
median larva curve exhibited a mortality rate of at least 1% at 28.1 ng/bee and reached 93.7% at
100 ng/bee. Considering the variability in larva dose-response curves, 95% of curves showed at
least 1% mortality at a dose of less than 42.6 ng/bee and at least 50.2% mortality 100 ng/bee.
We also inferred distributions of queen egg-laying rates and forager lifespan among
individual colonies, by sampling from the posteriors of the population-level means and standard
deviations. Queen egg-laying rates varied widely from 1000 to 3000 eggs/day, but most fell
between 1750 and 2500 eggs/day (Appendix 1 Figure S1: left). In contrast, the distribution of
forager lifespan among colonies was tightly concentrated between 13 and 15 days (Appendix 2

Figure S1: right).

Discussion

Our study demonstrates that the VarroaPop colony simulation model can be successfully fit to
empirical field data from colony-level toxicity studies, providing novel inference on in-hive
dynamics. Because field-based colony-level studies are logistically and financially expensive,
models like VarroaPop are a promising method for gaining additional information on colony-
level effects using input parameters from laboratory toxicity testing. Furthermore, colony
simulation models can help separate effects of pesticides from factors like weather, temporal
shifts in demography (e.g., population growth/reduction and change in structure), and hive-to-
hive variation in queen egg-laying rate. Our analysis of the clothianidin feeding study data

suggests that acute oral toxicity to adult workers and foragers is sufficient to explain the majority
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of colony declines observed at 72 and 140 pg/kg, although additional mechanisms appeared to

prevent population recovery at 140 pg/kg.

Simulating honey bee colony population trends and structure with VarroaPop
The VarroaPop model, when parameterized to the feeding study data using ABC, was able to
predict overall trends in colony population through time as well as general caste structure,
supporting our hypothesis that the model could reproduce general trends in the data. Trends in
control data that were predicted included an initial increase in the number of adult bees; a decline
in the number of adults, pupae and larvae at the last time point; and a consistently decreasing
number of eggs. Although VarroaPop fit overall data trends, there was a consistent deviation
from empirical results. VarroaPop predicted an initial spike and recovery in the predicted adult
and pupa populations, causing them to peak several weeks earlier than in the feeding study. This
lagged response error is likely caused by initialization behavior of the VarroaPop program which
distributes all bees within each caste evenly, across all ages. In the feeding study, colony size
was increasing at the beginning of the study period and it is likely that most bees were at the
young end of their age ranges, leading to a later demographic peak as a function of pupae and
adult development in the empirical data relative to the model (Page and Peng 2001). This
behavior may be alleviated by allowing uneven distributions of bees across age ranges, or by
obtaining data for a sufficiently long pre-treatment period that allows the model to equilibrate to
a natural age distribution based on egg-laying-rate.

The VarroaPop model also fit the general caste structure of the colonies in the feeding
study. Both the empirical data and model predictions had a ratio of non-forager

adults:pupae:larvae around 2:2:1 for control hives at all time points, except the final one.
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Interestingly, this ratio of non-forager adults is 35-75% lower than the range predicted by a
steady-state model bee population using mortality rates from the literature (Torres et al. 2015).
To fit this low number of adult bees, we reduced the VarroaPop pupa-to-adult transition survival
rate to 60% from the default 100%. Lower adult bee population, relative to pupae and larvae,
was likely caused by background mortality from sources other than clothianidin exposure.

One potential source of background mortality is infection by a honey bee pathogen (e.g.,
chalkbrood, foulbrood, or sacbrood virus) that may kill bees at the pupal stage (Aronstein and
Murray 2010, Evans and Schwarz 2011), resulting in capped cells that may be counted in a
census but fail to produce adults. While the authors of the colony feeding study did not observe
these diseases (Louque 2016), they cannot be ruled out because hives were not treated for any
pathogens except Varroa mites. The authors did observe and quantify Nosema infection across
all treatment hives, however, and this pathogen causes reduced adult lifespan (Martin-Herndndez
et al. 2011). Additionally, despite treatment for Varroa mites, Varroa presence was observed in
study hives, albeit at relatively low levels (0.71-2.40 mites per 100 bees in August 2014)
(Genersch et al. 2010). Mortality due to pathogen infection, in combination with Varroa
pressure, may have contributed to poor overwintering success following the exposure period, that

was noted in all treatments, including the control (Higes et al. 2008, Barron 2015).

Using VarroaPop to explain the effect of clothianidin on colony endpoints

The VarroaPop model predicted declines in each colony-level endpoint for the 72 and 140 pg/kg
clothianidin treatments, with magnitudes similar to those in the feeding study. The model also
predicted a subsequent recovery in the number of adults and pupae for these treatments to levels

similar to the control colonies by the final colony condition assessment (11 weeks after exposure
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ended). This period of recovery in colony strength was also observed in empirical data for the 72
pg/kg hives but not the 140 pg/kg hives, which continued to decline through the end of the study
period. Hives in the feeding study also exhibited significant (relative to the control), but
transient, adverse effects at 36 ug/kg for two of the four endpoints considered (adults and pupae),
but our model did not predict this. Taken together, our results do not support our hypothesis that
ingestion-based toxicity is sufficient to explain colony declines in the clothianidin feeding study.
Our model, which considered only acute oral toxicity, explained most of the negative effects
seen in the empirical data and estimated a LOAEC of 60 ng/kg, within a factor of 2 of the
empirical value of 36 pg/kg. However, additional mechanisms may have contributed to declines
at lower exposure levels (36 pg/kg) and lack of recovery at higher exposure levels (140 pg/kg).
Our model may have underestimated effects of 36 pg/kg clothianidin spiked nectar
because it did not consider chronic, sublethal effects. Based on our estimated nectar consumption
values (USEPA et al. 2014), 36 ng/kg translates to a daily exposure of 13.3%-26.6% of the
inferred mean LDso (16.3 ng/bee) for adult workers, with some variation due to age. There is a
growing understanding that prolonged exposure to neonicotinoid insecticides at concentrations
below lethal doses can cause adverse effects in individual bees that could ultimately affect
colony performance (Godfray et al. 2015). Sub-lethal exposure appears to inhibit immune
response (Brandt et al. 2016) and may lead to greater susceptibility to pathogens (Di Prisco et al.
2013, Doublet et al. 2015) including Nosema (Alaux et al. 2010), a unicellular parasite observed
across all treatments in the feeding study. In addition, sub-lethal doses may reduce foraging
success (Yang et al. 2008) by inhibiting learning and memory (Decourtye et al. 2004), navigation
(Stanley et al. 2015), and locomotor function (Williamson et al. 2014, Tosi et al. 2018). Future

modeling efforts could include these sublethal effects pathways, in combination with Varroa
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mite pressure, to test whether addition of these mechanisms allows better prediction of transient
colony declines at lower pesticide exposure levels.

Sublethal effects may also explain the lack of recovery of the 140 pg/kg-exposed hives
observed in the feeding study, but not predicted by our model. Although these effects may
disappear by 11 weeks after exposure, increased colony disease burden (from decreased
immunity) and decreased food stores (from altered foraging behavior) could lead to colony
failures in the fall or winter (Higes et al. 2008, vanEngelsdorp et al. 2009, Naug 2009).
Interestingly, hives in the feeding study had a low number of workers, relative to pupae, across
all treatments and time points. This low worker population, combined with clothianidin
ingestion-induced mortality and possible sublethal effects at 140 pg/kg, may have pushed hives
into failure. The VarroaPop model could better fit these scenarios by simulating pathogens in
addition to Varroa mites; by including pesticide effects on immunity; and by adding feedback
pathways critical to colony success such as thermoregulation, brood-rearing and hive defense

capacity (Winston 1987, Stabentheiner et al. 2010, Barron 2015).

Using a colony dynamics model to assess pesticide risk to bees

Fitting a honey bee colony dynamics model to field-based experimental data allowed us to gain
additional insights that could be leveraged as part of the risk assessment process used by
regulatory agencies. Two key findings relative to the empirical colony feeding study were that
some colony endpoints decline at lower exposure levels than our model predicted, and actual
recovery of colony endpoints at the highest exposure level was less than our model predicted. As

discussed above, these findings point to effects beyond oral toxicity-induced mortality,
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suggesting that pathogen pressures and environmental variability also play important roles in
colony-level honey bee population dynamics.

We were also able to infer dose-response relationships from the empirical data, endpoints
which are typically difficult to estimate in whole-colony studies without a predictive model that
simulates internal hive processes. Our parameterized Bayesian model indicated that the median
oral LDso for adult bees in the feeding study was 16.3 ng/bee, which falls just above the range
observed in laboratory acute oral toxicity studies on individual bees, 2.6—15.7 ng/bee (Laurino et
al. 2011, USEPA 2017), and within the 95% confidence interval of one of the two registrant-
submitted studies (USEPA 2017). Interestingly, this suggests that Tier 1 individual bee toxicity
experiments with clothianidin could be informative for adult oral toxicity in ecologically-
relevant scenarios, despite their inherent simplicity. In contrast, our analysis of the feeding study
data provided little insight into the larval oral LDso, as evidenced by the broad probability
distribution for this parameter which did not improve as ABC-SMC progressed, and there are no
other studies that directly assessed acute larval toxicity (USEPA 2017). This highlights one
drawback to highly parameterized inference methods: a dataset can lack sufficient information to
describe all parameters in a model (Luo et al. 2009). This issue of non-identifiability can occur
when parameters have functional interrelationships (correlation) (Li and Vu 2013), as in the case
of larval and adult toxicity, where larval mortality leads to fewer adults and adult mortality leads
to fewer larvae through reduced queen egg-laying rate. In fact, the feedback of adult mortality on
number of larvae may be responsible for the consistent and significant adverse effects predicted
for larvae at 72 and 140 pg/kg despite the wide range of possible larval LDsg values. We

calculated fit to the empirical data based on the number of adults and eggs, but not larvae and
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pupae, however, and including these latter two endpoints in future analyses may allow better
inference on larval toxicity.

We also leveraged our model to predict a more precise LOAEC for number of adults,
pupae, larvae and eggs by fitting toxicity parameters from the concentrations tested in the
feeding study, then predicting untested concentrations between 36 and 72 pg/kg, our initial
estimates of NOAEC and LOAEC. This method 1s more rigorous than simply interpolating
responses between two tested concentrations because it can account for uncertainty and non-
linear effects or tipping points, and it allows for consideration of statistical significance. We
estimated a more precise NOAEC and LOAEC of 55 and 60 pg/kg, respectively, based on
adverse effects across all endpoints. By comparison, a statistical analysis of the feeding study
data found a NOAEC and LOAEC of 19 and 36 ng/kg, respectively, for adults and pupae and 36
and 72 pg/kg, respectively for eggs and larvae (Louque 2016). It is important to remember that
our model-derived LOAEC describes the lowest concentration at which ingestion-induced
mortality is expected to begin significantly impacting colony-level endpoints but does not
consider other types of effects such as non-lethal effects or contact exposure that may be better
represented by the empirically-derived endpoints. Despite this caveat, our analysis shows how
colony dynamics models can estimate outcomes at exposure levels that could not be tested due to

logistical or financial constraints.

Conclusion
We challenged the VarroaPop+Pesticide bee colony dynamics model to simulate a publicly
available registrant-submitted dataset from a colony feeding study in which colonies were

exposed to pesticide-spiked nectar at six concentrations, and population-level effects were
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tracked over several months. We successfully fit the model to these data using Approximate
Bayesian Computation with Sequential Monte Carlo, and inferred parameter distributions that
best describe the dose-response relationships and other key colony characteristics. Our results
demonstrate that honey bee colony models, combined with Bayesian model inference, can
investigate hypotheses about individual-level responses to pesticides from ecologically-relevant
colony-level data. These parameterized models can also predict how colonies will respond to
hypothetical scenarios such as untested concentrations, changes in weather or additional
stressors. Our findings suggest that applied colony dynamics models are a promising tool for

inference in support of higher-tier pesticide risk assessments.
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766 Tables

767
768  Table 1: List of parameters considered to be random variables and inferred through

769  Approximate Bayesian Computation.

Parameter name in o . Lower Upper
VarroaPop Description Units Type limit limit
ICAdultLD50 Oral LDso for adults ng/bee Prior 0.1 100
ICAdultSlope Slope of the adult dose- % mortality/ng Prior 1 9
response curve
[CLarval.LD50 Oral LDs, for larvae ng/bee Prior 0.1 100
ICLarvaSlope Slope of the larva dose- % mortality/ng Prior 1 9
response curve
. . Hyper
ICForagerLifespan (mean)  Mean lifespan of foragers days prior 4 16
ICForagerLifespan (sd) Std. dev. of forager lifespan days I;In);%err 0 3
ICQueenStrength (mean) Mean queen strenrgth (o< cgg unitless Hyper 1 5
laying rate) prior
ICQueenStrength (sd) Std. dev. of quech strength unitless Hyper 0 2
(o egg laying rate) prior
770
771
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772

773

774

775

776

777

778

779

Table 2: Percent of the study period that each treatment was predicted by our model to have a
significant reduction in bee counts, compared to the control. The study period is the first day of
treatment until the final colony condition assessment of 2014. An endpoint was considered
significantly reduced (compared to the control) when the 95% prediction interval of the change
did not contain zero. Clothianidin levels 50-70 pg/kg were predicted by the model but were not

present in the empirical feeding study.

Percent of Study Period Significantly
Lower Than Control

erlpozlslilalzidin Adults Pupae Larvae Eggs Mean
10 pg/kg 1.7 0.0 0.0 0.0 0.4
19 pg/kg 0.0 0.0 0.0 0.0 0.0
36 pg/kg 0.0 0.0 0.0 0.0 0.0
50 uglkg 0.0 0.0 0.0 0.0 0.0
55 uglkg 0.0 2.6 6.8 1.7 2.8
60 uglkg 359 325 333 325 33.6
65 uglkg 393 419 427  41.0  41.2
70 ugrkg 444 444 453 436 444
72 ng/kg 47.0 47.0 46.2 470  46.8
140 pg/ke 91.5 88.9 87.2 872 88.7
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inferred from the empirical feeding study data. Axes are labeled with parameter names specified
in the VarroaPop+Pesticide program (see Table 1 for definitions). Marginal posterior
distributions are shown in the diagonal. All priors were uniform across the x-axis range.
Bivariate scatterplots (top half) and heatmaps (bottom half) of the distribution of accepted

parameters illustrates covariance between parameters.

[PAGE]

ED_006569N_00003966-00041



820

821

822

823

824

Iy

ria

Percent mo

i)

&

Adult doese-resparse curve

seecoe fieastiziny

- 5%% predichion int
Y : T Y
pal 33 £l &

Hlaridin ingested {rgibee)

Percsnt mortality

100

&

4

Larva {iDSE"—!’QS@OﬁS& pu3 R0

espenne Mzdian

ceen BE% prediciion ok

7
Clnthianidin ingested {ngfheg)

Sk 19

Figure 7: Our model’s predicted adult (left) and larva (right) dose-response curves, given the

empirical feeding study data. Solid blue lines represent the median prediction and dotted blue

lines denote the 95% prediction interval.

[PAGE]

ED_006569N_00003966-00042



825  Appendix 1

826
827  Table S1: Static VarroaPop+Pesticide parameter values used in this study.

Category Parameter name Description Units Value
Foraging
IPollenTrips Pollen trips per day times/day 8
INectarTrips Nectar trips per day times/day 17
[PollenLoad Pollen collected per trip mg 15
INectarLoad Nectar collected per trip mg 30

Max. proportion of workers that

ForagerMaxProp can be active foragers 03
Consumption

CLdPollen Pollen consumption, worker mg/day 18
larvae, age 4 days

CL5Pollen Pollen consumption, worker my/day 16
larvae, age S days

CAL3Pollen Pollen consumption, worker mg/day 6.7
adults, days 1-3
Pollen consumption, worker

CA410Pollen adults, days 4-10 mg/day 6.7
Pollen consumption, worker

CA1120Pollen adults, days 11-20 mg/day 1.7

CForagerPollen Pollen consumption, foragers mg/day 0

CLDPollen Pollen consumption, drone larvae  mg/day 3.6
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828

829

CADPollen Pollen consumption, drone adults  mg/day 2.0
CLANectar Nectar consumption, worker mg/day 60
larvae, age 4 days
CI5Nectar Nectar consumption, worker meg/day 120
larvae, age 5 days
Nectar consumption, worker )
CAl13Nect o/ d: 60
cetat adults, days 1-3 mg/day
Nectar consumption, worker
CA410Nect: /d 140
eetat adults, days 4-10 meraay
Nectar consumption, worker
CA1120Nect /d 60
eetat adults, days 11-20 meaay
CForagerNectar Nectar consumption, foragers mg/day 292
CLDNectar Nectar consumption, drone larvae mg/day 130
CADNectar Nectar consumption, drone adults mg/day 225
Demographics
RQEnableReQueen Enable requeening? off
%
ETol Xifion % of.e.ggs that successfully % 100
transition to larvae
0 ~ 7o A~
LToBXition %0 ot.lgﬁ ae that successfully % 100
transition to pupae (brood)
0
BToAXition % of pul?ae (brooc.i). that v 60
successfully transition to adults
AToFXition % of Aa.dults that successfully v 100
transition to foragers
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Figure S1: Probability density of maximum queen egg laying rate (eggs/day) and forager

lifespan (days) for individual colonies in the feeding study, as predicted from 200 draws of the

joint posterior.
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Figure S3: Predicted change, from the control, in number of adults for clothianidin levels not

tested in the feeding study. Solid blue lines represent the median prediction and dotted blue lines

denote the 95% prediction interval.

[PAGE]

ED_006569N_00003966-00048



